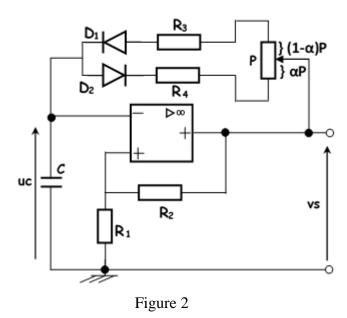

EXERCICES SUR LES MULTIVIBRATEURS ASTABLES (OSCILLATEURS A RELAXATION)

Exercice 1

Soit le montage de la figure 1


On considère que l'amplificateur opérationnel du montage de la figure 1 est idéal et alimenté par une tension symétrique $\pm Vcc = \pm 12V$. On donne : $R_1 = R_2 = R_3 = R = 4,7 \text{ k}\Omega$ et $C = 1\mu\text{F}$.

On demande de :

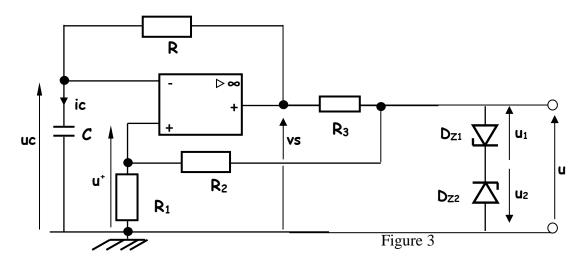
- 1) déterminer les valeurs des seuils de basculement ;
- 2) tracer les formes d'ondes de tensions Vs et Vc;
- 3) calculer la période d'oscillation;
- 4) calculer la fréquence de l'oscillation.

Exercice 2

Soit le montage de la figure 2.

L'amplificateur opérationnel du montage de la figure 2 est supposé idéal et alimenté symétriquement par $\pm Vcc = \pm 12V$.

On donne:


 $R_1=3,3k\Omega$; $R_2=4,7k\Omega$; $R_3=R_4=2,2k\Omega$; $P{=}10~k\Omega$; $C=1\mu F$; $0\leq\alpha\leq1.$ Les diodes sont supposées idéales.

Questions

- 1) Quels sont les rôles des diodes D₁ et D₂ ?
- 2) Déterminer les seuils de basculement de l'oscillateur.
- 3) Le réglage du potentiomètre est tel que $\alpha = \frac{1}{3}$
 - 3.1) Déterminer les temps de charge (t_H) et de décharge (t_B) du condensateur
 - 3.2) En déduire la période T.
 - 3.3) Tracer les chronogrammes des tensions uc et vs.
 - 3.4) De quoi dépend l'amplitude maximale de Vs?
- 4) Quel est le rôle du potentiomètre P?
- 5) Exprimer le temps de charge t_H du condensateur en fonction de R_3 , C, α et P.
- 6) Exprimer le temps de décharge t_B du condensateur en fonction de R₄, C, α et P.
- 7) En déduire les expressions de la période T et du rapport cyclique δ de us en fonction de R_3 , R_4 , C, α et P. Calculer T.
- 8) Tracer la courbe δ en fonction de α et en déduire les valeurs maximale et minimale de δ .

Exercice 3

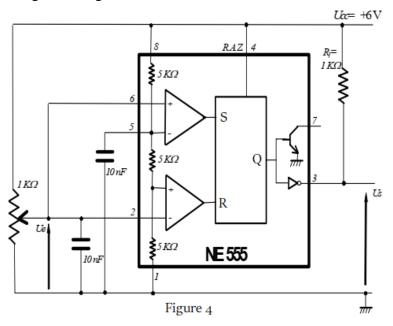
On considère le montage de la figure 3.

L'amplificateur opérationnel est supposé parfait, de tension de saturation $\pm V$ sat $= \pm 12V$.

 D_{Z1} est une diode Zéner de 3,9V et D_{Z2} une diode Zéner de 8,2V ; chaque diode a une tension de seuil direct de 0,6V.

On donne : R=8,2 k Ω ; $R_1=R_2=10$ k Ω ; C=10 nF. A $t=0^{\circ}$, on a vs = -Vsat et uc = $u^+=-2,25$ V.

1) Pour $0^+ \le t < t_1$, vs = +Vsat.


- 1.1) Précisez l'état des diodes Dz1 et Dz2.
- 1.2) Calculer u et u+
- 1.3) Comment évolue la tension uc ?
- 1.4) Déterminer l'expression instantanée de la tension uc.
- 1.5) Calculer l'instant t₁ auquel la tension vs bascule de +Vsat à -Vsat.

2) Pour $t_1^+ \le t < t_2$, vs = -Vsat.

- 2.1) Précisez l'état des diodes D_{Z1} et D_{Z2}.
- 2.2) Calculer u et u+
- 2.3) Comment évolue la tension uc ?
- 2.4) Déterminer l'expression instantanée de la tension uc.
- 2.5) Calculer l'instant t₂ auquel la tension vs bascule de -Vsat à +Vsat.
- 3) Des résultats précédents, déduire la période T, la fréquence f et le rapport cyclique δ de la tension u.
- 4) Tracer en concordance de temps les chronogrammes des tensions uc, vs et u.

Exercice 4: Etude du fonctionnement du circuit 555

On considère le montage de la figure 4.

- 1) Quelles sont les tensions constantes qui apparaissent sur les entrées des comparateurs internes au NE555 câblé selon le schéma représenté figure 4 ?
- 2) Reproduire le tableau suivant et compléter la table de vérité de la bascule RS.

Ue	R	S	Q	$\overline{m{Q}}$
croissant de 0 à $\frac{1}{3}Ucc$				
croissant de $\frac{1}{3}Ucc$ à $\frac{2}{3}Ucc$				
croissant entre $\frac{2}{3}Ucc$ à Ucc				
décroissant de $\frac{2}{3}Ucc$ à $\frac{1}{3}Ucc$				
décroissant de $\frac{1}{3}Ucc$ à 0				

3) Tracez *Us* en fonction de *Ue*

Exercice 5: Feux clignotant

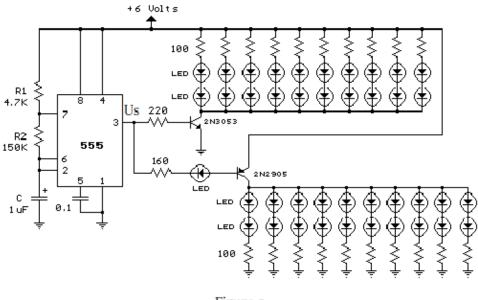
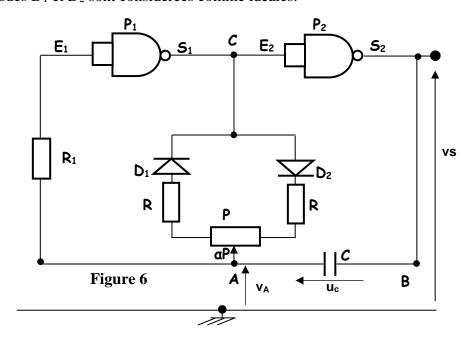


Figure 5


- 1) En régime permanent, calculer T_H et T_B les durées respectivement à l'état haut et à l'état bas de la tension Us (à la broche 3 du circuiNE555).
- 2) En déduire la période T du signal Us.
- 3) On veut obtenir exactement 1 clignotement par seconde. Pour cela, on remplace la résistance R2 par une résistance variable. Quelle doit être sa valeur théorique ?

Exercice 6

On considère le montage de la figure 6, réalisé à l'aide de deux inverseurs CMOS, dont les seuils de basculement sont $\frac{1}{2}V_{DD}$. Le circuit est alimenté par $V_{DD} = 12V$.

On donne : $R=22k\Omega$; $P=10~k\Omega$; $R_1=470~k\Omega$; C=1nF.

Les diodes D₁ et D₂ sont considérées comme idéales.

Page 5 sur 6

- 1) Pour $\mathbf{vs} = V_{DD}$, préciser la valeur de la tension \mathbf{v}_{C} (potentiel du point C sur le schéma) et l'état de chaque diode.
- 2) Pour $\mathbf{vs} = 0$, préciser la valeur de la tension $\mathbf{v}_{\mathbf{C}}$ (potentiel du point C sur le schéma) et l'état de chaque diode.
- 3) En déduire les expressions des constantes de temps τ_1 et τ_2 de charge et de décharge du condensateur C.
- 4) On considère qu'à l'instant $\mathbf{t} = \mathbf{0}$, $\mathbf{v}\mathbf{s} = 0$ et le condensateur est totalement déchargé.
 - 4.1) Comment évolue la tension u_c aux bornes du condensateur ?
 - 4.2) A quelle valeur de la tension u_c y aura-t-il basculement de **vs** ?
 - 4.3) Calculer l'instant t_1 auquel il y aura basculement de vs pour $\alpha = \frac{1}{2}$.
 - 4.4) A l'instant $t = t_1$, vs bascule. Quelles sont les valeurs des tensions suivantes ?
 - $uc(t_1^+)$
 - $v_A(t_1^+)$
- 5) Pour $t > t_1^+$, $vs = V_{DD}$.
 - 5.1) Comment évolue la tension u_c aux bornes du condensateur ?
 - 5.2) A quelle valeur de la tension u_c y aura-t-il basculement de ${\bf vs}$?
 - 5.3) Calculer l'instant t_2 auquel il y aura basculement de vs pour $\alpha = \frac{1}{2}$.
 - 5.4) A l'instant $t = t_2$, vs bascule. Quelles sont les valeurs des tensions suivantes ?
 - $uc(t_2^+)$
 - $v_A(t_2^+)$
- 6) Exprimer les durées T_H de l'état haut et T_B de l'état bas de vs en fonction de R, αP et C en régime permanent.
- 7) En déduire les expressions de la période T et du rapport cyclique δ de vs en fonction des éléments du montage. Calculer T.
- 8) Tracer la courbe δ en fonction de α et en déduire les valeurs minimale et maximale de δ .
- 9) Pour $\delta = \frac{1}{3}$, tracer les chronogrammes des tensions vs, v_A et u_C en concordance de temps en régime permanent.