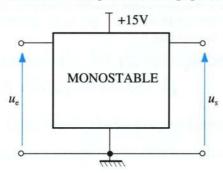
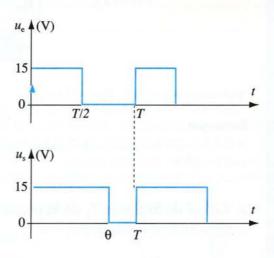

EXERCICES

9.01*

Reprendre l'étude du montage de la figure 4 mais avec $U_1 = + \frac{U_{\text{SAT}}}{2}$.

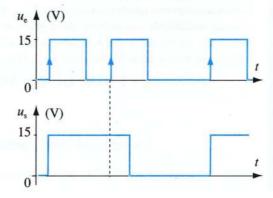



- 1. Préciser les expressions, dans l'état stable, des tensions v^+ , u_D , u_s et u_C .
- 2. En déduire le niveau U_2 de u_e permettant de déclencher le monostable.

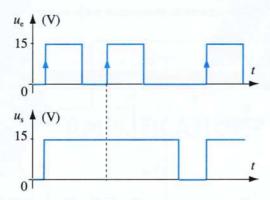
Réponses :
$$v^* = 0$$
 ; $u_D = -\frac{U_{SAT}}{2}$; $u_s = -U_{SAT}$; $u_C = -U_{SAT}$;

9.02*

Un monostable intégré est déclenché par le front montant du signal d'entrée comme l'indique la figure. Sa durée de récupération est négligéable.

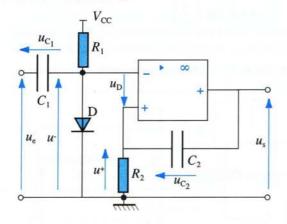

- 1. A quel intervalle de temps pendant la période T, correspond l'état instable du monostable ? Quelle est alors la valeur de u_s ?
- 2. Combien de temps l'état instable dure-t-il?
- 3. Représenter en concordance de temps les tensions u_e et u_s pour un déclenchement du monostable sur un front descendant.

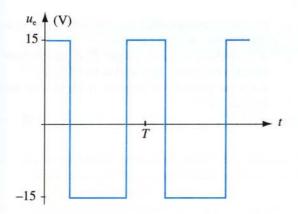
Réponses:
$$[0; \theta]$$
; $u_s = 15 \text{ V}$; $T_0 = \theta$.


9.03**

Un monostable est dit non redéclenchable lorsque sa durée propre T_0 n'est pas modifiée par l'apparition d'un nouveau front actif en entrée durant l'état instable. Il est dit redéclenchable dans le cas contraire. On a relevé les chronogrammes suivants pour deux monostables intégrés déclenchés par le front montant du signal d'entrée :

MONOSTABLE A


MONOSTABLE B


- Indiquer, d'après les chronogrammes, quel est le monostable qui est redéclenchable et celui qui ne l'est pas.
- 2. Représenter les chronogrammes correspondants au monostable déclenché par le front descendant du signal d'entrée.

9.04**

On considère le montage ci-dessous :

On donne : $R_1 = 10 \text{ k}\Omega$, $C_1 = 10 \text{ n}F$. $V_{CC} = U_{SAT} = 15 \text{ V}$; $R_2 = 10 \text{ k}\Omega$, $C_2 = 40 \text{ n}F$.

L'A.D.I. est alimenté en + V_{CC} et - V_{CC}.

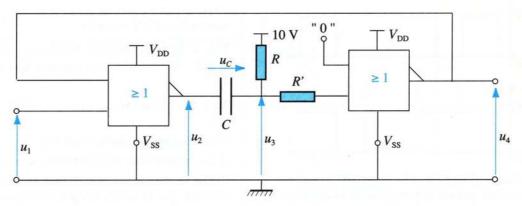
 $u_{\rm e}$ est un signal rectangulaire de période T=20 ms. La diode D a pour schéma équivalent : un interrupteur ouvert en inverse et une source de tension $E_0=0.7$ V en direct.

1. $u_e = 15$ V depuis une durée très supérieure à $\tau_1 = R_1 \cdot C_1$, la diode D est passante. Que valent u et u_{C1} ?

2. a) A l'instant où u_e passe à -15 V, que vaut v^- ?

- b) Quel est l'état de la diode D?
- c) Dans quel sens évoluent alors u^- et u_{C1} ?
- d) En calculant la constante de temps du phénomène montrer que la diode D redevient passante bien avant que u_e soit redevenue égale à +15 V.
- e) u^- est-il modifié lorsque u_e passe à +15 V?
- f) Tracer u^{-} en concordance de temps avec u_{e} .
- 3. a) A l'état stable $u^- = E_0 = 0.7 \text{ V}, u^+ = 0 \text{ V}.$ Que valent u_s et u_{C2} ?
- b) A l'instant t_1 où u_e passe à -15 V, rappelez la valeur de u^- et en déduire la valeur de u_s et de v^+ .
- c) Avec quelle constante de temps la charge du condensateur C_2 et le courant dans R_2 vont-ils évoluer?
- d) Ecrire sans la démontrer, l'expression de $v^* = f(t')$ à partir de l'instant t_1 . On effectuera le changement d'origine : $t' = t t_1$.
- e) On admet qu'à l'instant t_2 où v^+ atteint la valeur $E_0 = 0.7 \text{ V}$, v^- a déjà atteint cette valeur E_0 .

Exprimer t_2 et montrer que :


$$\Delta t = t_2 - t_1 = \tau_2 \cdot \ln \left[\frac{2 \cdot V_{CC}}{E_0} \right] \text{ avec } \tau_2 = R_2 \cdot C_2 .$$

Calculer Δt .

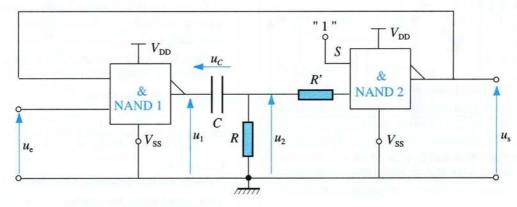
- f) Quelle est la valeur de u_s à l'instant t_2^+ ?
- g) Donner l'allure des courbes u^+ et $u_{\rm s}$ en fonction du temps.

9.05**

On réalise un circuit monostable avec des portes NOR CMOS. Le schéma du monostable est le suivant :

On donne : $V_{DD} = 10 \text{ V}$; $V_{TH} = 5 \text{ V}$.

- 1. A l'état de repos, on a $u_1 = 0$ V et le condensateur est déchargé. Déterminer alors la valeur de la tension de sortie u_4 puis les tensions u_2 et u_3 .
- 2. A l'instant $t = 0^+$, on envoie en u_1 une impulsion très brève d'amplitude 10 V. Expliquer le fonctionnement du montage et représenter les tensions u_2 , u_3 et u_4 en fonction du temps sachant que


$$\tau = RC = 0.15 \text{ ms.}$$

3. Déterminer la durée θ de l'impulsion de sortie du monostable en fonction de τ . Application numérique. On rappelle que les variations de tension aux bornes d'un condensateur, chargé ou déchargé sous tension constante à travers une résistance R, sont de la forme :

$$A+B\cdot\exp\left(\frac{-t}{\tau}\right)$$
.

9.06**

On réalise un circuit monostable avec des portes NAND CMOS. Le schéma du monostable est le suivant :

On donne $V_{\rm DD}$ = 10V et $V_{\rm TH}$ = 5V. R = 15 k Ω et C = 100 nF.

- **1.** A l'état de repos, on a $u_e = V_{DD}$ (niveau logique 1). Déterminer alors les valeurs des tensions u_2 , u_s , u_1 et u_C .
- **2.** A l'instant t_0 , on annule la tension u_e (niveau logique 0) pendant une durée très courte. Expliquer le fonctionnement du montage et tracer les chrono-

grammes correspondant aux tensions u_1 , u_2 , et u_s en concordance de temps avec u_e .

- 3. Déterminer la durée propre T_0 du monostable en fonction de R et C. Application numérique.
- **4.** Que se passe-t-il si on porte la borne *S* au niveau logique "0"?